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It is shown that two matrices 4 and B of order n X n which satisfy a monic quadratic equation
with two roots A, and A, are connected by AT,; = T ,;Bwhere T, =4 +B — (A, + A)IwithI
being the n X n unit matrix (Theorem 1). The condition for T, to be involutional is that the
anticommutator of 4 =4 — (1/2)(A, + A)I and B = B — (1/2)(A, + A,) is a ¢ number
(Theorem 2). A 2m X 2m matrix Q ®™ is introduced as a typical form of a matrix which can be
diagonalized by an involutional transformation. These theorems are further extended through
the matrix representation of the group of the general homogeneous linear transformations,
GL(n). IUH (involutional, unitary, and Hermitian) matrices are introduced and discussed. The
involutional transformations are shown to play a fundamental role in the transformations of
Dirac’s Hamiltonian and of the field Hamiltonians which are quadratic in particle creation and

annihilation operators in solid state physics.

1. INTRODUCTION

Almost ten years ago the author developed a theory of
involutional matrices ' (this work will be referred to as I,
which are defined as the solutions of the simple quadratic
equation,

x? = const X1, (1.1

where I is the unit matrix. The two-dimensional solution of
this equation is simply given by a traceless matrix; the well
known examples are the Pauli spin matrices. The solutions
of (1.1) in arbitrary dimensions have been obtained by the
matrix representation for the group of the general homogen-
eous linear transformations in two dimensions, GL(2). The
symmetry properties, and the eigenwert problems for the
solutions have also been discussed. It has been recognized
that involutional matrices have deep roots in various prob-
lems of mathematical physics. ' The solutions of a more
general equation x ™ = const X I have also been studied by
Santhanam et al.* and are given explicitly for m = 3. We
shall, however, limit 72 = 2 in the present work.

The purpose of the present work is to show the effective-
ness of involutional transformations in connecting matrices
of certain types frequently encountered in physics. The con-
venience of an involutional transformation is obvious from
the fact that the inverse transformation is the same as the
original transformation. Any unitary transformation be-
comes an involutional transformation when the unitary ma-
trix of the transformation is Hermitian. Such a matrix may
be called an JUH (involutional, unitary, and Hermitian) ma-
trix, where any two of the properties guarantee the third.
The well known examples are Puali’s spin matrices, Dirac’s
¥ matrices, and Dirac’s Hamiltonian for a free electron in the
momentum representation. * The effectiveness of involu-
tional transformations has also been recognized by Wigner 3
in connection with the representation theory of the Poincaré
group.
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Let M (n X n,p (x)) be a set of matrices of order n X n,
every member of which satisfies a given polynomial equation
pP(x) = 0 of degree . We can then prove a general theo-
rem ° that if two matrices 4 and B belong to the set

A, BeM (n X n,p"(x)), (1.2)

we can construct a polynomial 7., of 4 and B which trans-
forms A4 into B if T, is nonsingular. In the discussion of
involutional transformation, however, we need to consider
only the simplest special case where 7 = 2. Let p @(x)
=x>— (A, + 4,) x + A, 4,. Then the transformation
matrix T, which connects 4 and Be M (n X n, p P(x)) is
simply givenby T, =4 + B — (A, + A,)I (Theorem 1).
Based on this theorem we shall establish the condition for
T .5 to be involutional (Theorem 2).

In special cases where 4 > = B? = I, these theorems are
closely related to the fundamental theorem of Pauli %7 which
connects two sets of anticommuting Dirac ¥ matrices. Based
on these theorems we can construct the spinor representa-
tion for a group of orthogonal transformations in arbitrary
dimensions ®®, of which a special case is the Lorentz group.
The more direct applications of the theorems are in solving
the energy eigenvalue problems in the Dirac relativistic the-
ory of an electron; the powerful transformation due to Foldy
and Wouthuysen *'° for a free electron and Biedenharn’s
transformation '! in the Dirac-Coulomb problem are imme-
diately obtained from Theorem 2 (Sec. 2).

Using the theorems developed in Sec. 2, we shall con-
struct a special type of matrix Q @™ of order 2m X 2m which
can be diagonalized by an involutional transformation. The
Q@™ matrix is by no means the most general form of 2 ma-
trix which can be diagonalized by an involutional transfor-
mation. Nevertheless, all 2 X 2 matrices and the Dirac matri-
ces are Q ®™ types or direct sums of Q @™ type. It will be
shown that when Q ™ is normal, the transformation matrix
which diagonalizes Q “” becomes an IUH matrix (Sec. 4, we
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shall extend the theorems developed in Secs. 2 and 3 to an
invariant matrix '> S (4 ) of a matrix AeM (n X m,p *(x)) by
the matrix representation theory developed in I. This is pos-
sible since in this representation S (4 ) is triangular when 4 is
triangular. Moreover, if we limit 4 to 2 X 2 matrices, we can
show that many symmetry properties of A are directly re-
flected to those of S (4 ). Asaresult, if 4 is diagonalized by an
TUH matrix, then sois S(4).

In Sec. 5, we shall given some illustrative examples
which may exhibit further significance to the involutional
transformations. The examples considered are the Bogoliu-
bov Hamiltonian '*'* for phonons in a superfluid and the
Hopfield Hamiltonian '* for a polariton-photon field. These
are typical field Hamiltonians in solid state physics. It is well
known that diagonalizations (the reductions into the canoni-
cal forms) of these Hamiltonians require nonunitary trans-
formations, owing to the fact that the particle creation and
annihilation operators are not Hermitian. We shall show
that these nonunitary transformations can be characterized
by involutional transformations.

2. BASIC THEOREMS

Theorem 1: Let 4 and B be matrices of order n X n
which satisfy a monic quadratic equation p @(x)
=x2— (A, +A,)x + A, 4, =0, with two roots A, and
A, . Then, 4 and B are connected by

AT,; =T, B, 2.1
where
T,p=A+B— (4 +4)1, 2.1)

I being the # X n unit matrix. If T, is nonsingular, then 4
and B are equivalent.

The proof'is self evident. It is obvious that if 4 and B are
not equivalent, then T, is singular, while the equivalence of
A and B does not guarantee that T, is nonsingular. For
convenience, we may call T, the characteristics transfor-
mation matrix of 4 and B, which may or may not be singular.
Since Ty, = Tp,, we have

Ty AT, = T,ZqBB =B waa (2.2)
that is, 7%, commutes with A and B. This property will play
an important role when B is a diagonal matrix equivalent to

A. The more general transformation matrix ¥,z which con-
nects A and B through

AV, =V, B 2.3)
is given by
Vie= FsTip= T,pFp (2.3

where F, is a function of x. In practical application, it is
often useful to introduce a special case where F, = 4,-
Fp = B. Then

Vig=AT;g= TyyB=AB— A, A, I 2.4
Note that ¥V, 5V, , unless 4 and B commute. The trans-
formation matrices T, and ¥, constitute the basis of the
present work.

It is obvious that Theorem 1 is most useful when T, is

nonsingular. We can easily establish such a condition for an
important special case where T, ; isinvolutional. Since invo-
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lutionality requires that the anticommutator of
A=A4A—LA, + A,)Iand B=B — 4(A, + A;)Iisac
number,
[A,B], =AB+ BA =2c,,1,
we have the following theorem:
Theorem 2: Let A, Be M (n X n, p®(x)). If the anticom-
muator of 4 =4 — (A, + A,)Tand B=B — (4,
+ A,) I isacnumber ( = 2¢,,z ), there exists an involutional
transformation which brings 4 into B via

(2.5)

Y,z AY ;5= B; YiB=I, (2.6)
where

Yig=Niyp[A+B—(4,+A)I],

N;BZ =3(4, — /12)2 + 2¢4p 27

provided N ,*=#0. Moreover, if 4 and B are Hermitian,
Y 5 is an IUH (involutional, unitary, and Hermitian)
matrix.

The involutional matrix Y, 5 acts as an exchange opera-
torof 4 and Bon any function f (4,B ) of A and Bwhich canbe
expressed in a power series of A and B,

Y /A, B) Y, s= f(BA). (2.8)
Thus, Y, commutes with any symmetric function of 4 and
B, and anticommutes with any antisymmetric function of 4
and B.

An alternate application of Theorem 2 is to transform A4
into the complementary matrix B ' of B defined by
B'= (A, + A,) I — B,since B 'satisfies the same quadratic
equation, P®(x) = 0. The matrix of transformation Y .
which brings A to B’ via Y ,,.AY ,,. = B’ is given by

Yip-=N,p(4d—B) N;Bz' =34, ~ /12)2 — 2¢,570.

2.9
Note that, if 4, 55 A, ,bothof T,z and T, 5. can not be nilpo-
tent at the same time. The transformation of B into its com-
pliment B’ gives an interesting problem since 75, = 0by
definition. We shall come back to this problem at the end of
Sec. 3.

In a simplest special case where 4 and B are 2 X 2 equiv-
alent matrices, the matrices 4, B and T ,5 of Theorem 2 are
all involutional matrices and the anticommutator of 4 and B
is always a ¢ number. Thus, we have the following corrollary
to Theorem 2:

Corollary: The characteristic transformation matrix
T, of two equivalent 2 X 2 matrices 4 and B is always invo-
lutional.

When A4 and B are involutional matrices satisfying
A?= B?* =1, Theorems 1 and 2 take simpler forms since
A, + 4, =0,sothat T,;, =4 + B. In this special case
Theorem 2 has very elegant applications for the Dirac theory
of an electron. To see this, let 7, , ¥, ,+, ¥, be a set of d-
anticommuting involutional matrices of an appropriate
order,

YoVut VuVo = 28,,, vu= 1,2,--d, (2.10)
and let # be a unit vector with constant components (¢,
u,,,Uy) in a d-dimensional space. Then a linear combina-
tion with the vector u,

ro= 3w @w=Yu=1
v=1 v
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is also involutional. Since the anticommutator of two such

linear combinations ¥, and ¥, isacnumber, 7, canbe trans-

formed into y, via an involutional transformation
Yuv yu Yuv = yv’

where

(2.12)

Yo = (Fu + 7.0/Q +200)% @) = Su,0,% — 1.

(2.12)

This result, (2.12), may be used to construct a general theory
of the spinor representation for a group of orthogonal trans-
formations in d dimensions. %”* Alternatively, the result
may be used to solve the energy eigenvalue problem for the
Dirac particle. Let us assume a representation which diagon-
alizes y,. Then the involutional matrix Y, given by

Yoo = (Vu + 720/ Q2+ 2u,)"?%, ug#—1 (2.13)
brings 7, to the diagonal matrix y,. Since the Dirac Hamil-
tonian for a free electron in the momentum representation is
aspecial case of y, withd = 4 except for ascalar factor of the
energy E, the Dirac plane wave solutions ® are completely
described by the involutional matrix Y, ,. It can be shown
that a powerful transformation due to Foldy and Wouthuy-
sen '° Sy, for a free electron and Biedenharn’s ' transfor-
mation Sy in the Dirac-Coulomb problem are simply given
by ¥, Y,,, which corresponds to ¥, of (2.4). It will be
shown ° that Y, is more effective than 7, Y, , in these trans-
formations on account of the fact that Y, is involutional.

3. DIAGONALIZATION OF Q“™ MATRICES

We shall specialize the results obtained in Sec. 2 to the
case where B equals a diagonal matrix A equivalent to
Ae M (n X n, PP(x)) with P®(x) having two distinct roots.
It can be shown that there exists at least one proper A which
makes the characteristic transformation matrix T= 7, , be
nonsingular. We shall, however, postpone the proof of this
statement to a forthcoming paper ® where we shall develop a
general theory of matrix diagonalization for a matrix
Ae M (nX n,P"(x)) based on the reduced characteristic
equation P”(x) = 0 which has no multiple roots. In this
section we simply investigate the structure and the proper-
ties of the matrix 4e M (n X n,P ®(x)) which can be diagona-
lized by an involutional transformation.

The basic equations (2.1) and (2.1') of Theorem 1 take
the following forms, when B equals a diagonal matrix A
equivalenttod: Let T =T, ,, then

AT =TA, TA = AT, a1
where
T=A4+A—(A,+4,)1L G.1)

Thus, a column (row) vector of T'is an eigenvector of A
provided that it is not a null vector. From (2.2) or directly
from (3.1) and (3.1"), we have

TAT=T?A = AT> (3.2)

Accordingly, if we assume a standard form for A defined by
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A = ’
0 A0
where I, is the unit n, X n, matrix with n,, being the degen-
eracy of 1,,, then 7'? becomes a direct sum of two subma-
trices of order n, Xn, and n, Xn,.

In fact, if we substitute (3.1’) into one of Tin T2, we
obtain

(3.3)

T2=X1T(1)®X2T(2); szuv_/{‘l_;LZ
where @ denotes the direct sum and 7 is given by a
n, Xn, submatrix of 7,

) — 2

(TY];,;=T.p (3.4)
with 7, j belonging to the subspace corresponding to A, I, of
A. This is a rather remarkable property of 7, based on which
one can construct a more convenient transformation matrix
which becomes unitary when 4 is Hermitian. ¢

From (3.4), it is obvious that the condition for 7 to be
involutional is given by

XT®W=N"2I; v=12 (3.5)

where N is a constant independent of v, which is equal to
N,z of (2.7) when B = A. The conditions (3.5) and (3.4)
severely restrict the form of the matrix 4: If we exclude the
trivial case of where n, n,, wehaven, =n, =mand A
becomes a Q “™ type matrix of order 2m X 2m defined by

al b

(3.4

. be=el (3.6)

Qo™ =

¢ dl
wherea, d, e are constants, 1is the m X m unit matrix, band ¢
are m X m matrices which commute with each other. The
two characteristic roots are determined from 4, + 4,
=a+d and A, 4, = ad — e, so that the condition 4,44,
gives (@ — d)? + 4e=40. The trace and the determinant of
Q@™ are

Q™M =m@+d), detQ® =(ad—e)". (3.6)

The form of Q *™ matrix is rather limited, but all the
2 X 2 matrices are Q ®™ type matrices and all the Dirac ma-
trices are Q ¥ type or direct sums of Q ®™ type matrices. For
convenience, we may state the above findings in a form of a
theorem with the explicit form of the involutional matrix
which diagonalizes a Q @™ matrix.

Theorem 3: A Q™ type matrix of order 2m X 2m de-
fined by (3.6) is diagonalized by an involutional transforma-
tion through

A1 0
Yo QO7Y, = > Yo=1 Q)
0 A1
where A, 44, and
a—1,1 b
Yo =Ny : (3.8)
c d-ian

Ngi=({ — A )a—4,) = (4, — A Xd ~ 4,)70.
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It should be noted that N ; *540 can be always arranged
if 1, #A4, and that Y, is a special case of Y, ; of (2.6). From
(3.7), we have

trY, =0, detY, = (—1)" 3.8")
Thus for m = odd, Y, describes an improper rotation (see
I). It should also be noted that (2.13) is a special case of (3.8)
when Q @™ is involutional.

Now, according to Schur, the condition for a square
matrix to be diagonalized by a unitary transformation is that
the matrix be normal. A similar theorem holds for Q@™ .

Theorem 4: If the matrix Q ®™ is normal, the transfor-
mation matrix Y,, is an IUH (involutional unitary and Her-
mitian) matrix.

The proof is simple. When Q *™ is normal, the subma-
trices of Q ™ satisfy the following conditions.

(a* —d*)hb=(@—d)"*
bb* =cc™ = e[ X1 3.9

where a* and d * are the complex conjugate of a and d respec-
tively,and b * and ¢ * are Hermitian conjugate of the sub-
matrices b and ¢. From these conditions, it is a simple matter
to show that Y, is Hermitian so that it is unitary as well.
Q.E.D.

For a 2 X 2 matrix, the following corollary to Theorem
4 holds.

Corollary: Any 2 X2 matrix R @ can be brought into a
triangular form by an involutional transformation with an
IUH matrix.

The proof is simple. Let ( 5) be an eigenvector of R
where a can be made real. Then the required involutional
matrix Y is given by

*
Y=(a2+lﬁ|2)_”2(g Ba), (3.10)
where S * is the complex conjugate of 3. Q.E.D.

Before ending this section we shall go back to the prob-
lem of transforming a matrix B into its complement
B'= (A, +A,) I — B. This problem is interesting since
T,z = 0 by definition. When B and B’ are equivalent and
A, #A,, we have n; = n, = m so that they are matrices of
order 2m X 2m. Let us assume further that B is a Q @™ type
matrix. Then there exists an involutional matrix Y, which
brings B into a standard diagonal matrix A ; equivalent to B.
Likewise there exists Y., which brings B’ into A5.. It is
obvious that an involutional matrix J = (§ §) brings A,
into A .. Therefore, there exists an involutional matrix Y

= Y, JYg.,- which brings B into B'. When B is involu-
tional, B' = — B, so that Y given above satisfies

YB + BY =0, i.e., there exists an involutional matrix ¥
which anticommutes with a given involutional matrix B pro-
vided that B is a @ ®™ type (cf. Pauli’s fundamental theo-
rem ’ on Dirac’s ¥ matrices).

We shall make one additional remark on the involu-
tional matrix Y, defined by (3.8). It is obvious that Y, di-
verges as A; —A, while Y2 = 1. It can, however, be shown
that Q ®™ with two equal characteristics roots can be trans-
formed into a triangular form by an involutional matrix with
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amild condition that be = e150. In fact, the following invo-
lutional matrix,

1 (1 —e)(—e)~ Vb

Yszel[(_e)mc T ] (3.11)

with an arbitrary parameter €(s£0) brings @ @™ with
A, =4, into a triangular form (cf. Corollary to Theorem 4)

a+d)n €1

Y. Q%" Y, =
€ € 0 la+d)l

. (3.12)

4. DIAGONALIZATION OF INVARIANT MATRICES.

We shall extend the theorems developed in Sec. 3
through a matrix representation of the group of the general
homogeneous linear transformation in # dimensions, GL(n).
For this purpose, it seems best to use the particular represen-
tation .S (R ) of a matrix R “’eGL(n) introduced in I, for a
variety of the symmetry properties of R are directly re-
flected in S (R ). This representation gives an invariant ma-
trix 2.5 (R “?) of R *in the sense that the elements of S (R )
are polynomials in the elements of R ™. For definiteness, we
shall describe the representation.

Let {f,(r); v =1, 2.--p} be a set of linearly independent
functions of a vector r = (x, ,x, ---,x, ) in n dimensions. A
representation S (R ) is defined by

LRP)= $ SR, £.0).

=1
It should be noted that the conventional representation due
to Wigner ' is the inverse transpose of the above representa-
tion. We take f, (r) as the gth degree monomials

4.1

L@ =]] x/ODH2 v +vi+ v, =g (42)
i=1

n
where v stands for the set {v,,v,,~v,; > v,=¢}.By
i=1
definition S (R ‘) is an invariant matrix of R ¢ and the di-

n+q—1
mension of representation p is given by ( ) When

n=2,p=gq+ 1. Tolabel the matrix we choose the order of
v in the decreasing order, regarding v as a single number
with n decimal points, i.e., v = (v, ,v,,,v, ). Then, when
g = 1, the invariant matrix S (R ) coincides with R .

It has been shown ' that when R " is a triangular ma-
trix, S (R ™) is also triangular in shape similar to R . Based
on this theorem one can calculate the eigenvalues of S (R ™)
simply by transforming R ” into a triangular form by a suit-
able unitary transformation. ! Let T be the transformation
matrix which brings R *” into a triangular matrix R "’ via a
similarity transformation. Then we have for their
representations,

S(T)~'SRMS(T)=SR) 4.3)

where S (R () is triangular, similar in shape to R . Ac-
cording to Theorem 3, when R {is a Q @™ type matrix with
Ay 54, , it can be diagonalized by an involutional matrix Y,
so that
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S(Yp)S(Q (Zm))S(YQ) =8(Ap), n=2m 44
where A, and S (A,,) are diagonal matrices, and S(Y,) is
involutional, S (Y,)? = 1. This means that S (Q *™) is also
diagonalized by an involutional transformation. In a special
case when R = R PeGL(2),S (R )eGL(g + 1) where gis the
degree of the polynomial basis. From Theorem 2 of I, it can
easily be shown that

SR)=SR), SRH=SR)*, 4.5)

where R and R * are the transpose and the complex conjugate
of R, respectively. From (4.5) and the fact that S(R) is a
representation of R, we can state that if R is real, symmetric,
normal, Hermitian, unitary, triangular, or diagonal, then so
is.S (R ). Combining this result with the corollary to Theorem
4, wecanstatethat.S (R ) forany ReGL(2) can be broughtinto
a triangular form by a similarity transformation with an TUH
(involutional, unitary, and Hermitian) matrix.

The explicit form of S (R ) has been given by the au-
thor for n = 2 in I and by Santhanam et al., for n = 3.

5. ILLUSTRATIVE EXAMPLES FOR Q#™

We have shown some important applications of the pre-
sent formalism of involutional transformations on the rela-
tivistic theory of an electron in the end of Sec. 2 and on the
representative theory of GL(#n) in Sec. 3. In this section we
shall apply the involutional transformations of Q ®™ type
matrices for the diagonalizations of the Hamiltonians which
are quadratic in the “particle” creation and annihilation op-
erators in solid state physics. '* It is well known that such
diagonalizations require nonunitary transformations owing
to the fact that the particle operators are not Hermitian.
Through typical examples we shall show that such nonuni-
tary transformations may be characterized by involutional
transformations.

The examples considered are the Bogoliubov Hamil-
tonian which describes the phonon field in a superfluid or a
magnon field '* and the Hopfield Hamiltonian !> which de-
scribes the polariton-photon field. In actual calculations it
seems best to diagonalize the matrix which describes the
equation of motion of the particle operators in the field, since
it contains only commuting operators.

A. The Bogoliubov Hamiltonian '*

H= Y{stk*)aia,+3) +3tkHNaa _+a*,a;)
3

5.1
wheres(k *)and # (k %) are scalar functions, a," anda x arethe
creation and annihilation operators which satisfy the com-
mutation relations [a,, ¢, ] = 8., The problem is to find a
suitable linear combination a;, ofe, anda * , which reduces
H into the canonical form

H= Yek Yoo+ 1; [epaf]=1 (52)
k

The equation of motion is

3 ay st
i =R®[ ];R@=[ ] :
[a’fk] at, —t —sI 63
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where for simplicity the k 2 dependence of the matrix ele-
ments are suppressed and 7 = 1. It is evident that R @ is an
involutional matrix with eigenvalues + ¢,

€= (s2 _ 12)1/2>0.
Accordingly, it can be diagonalized via an involutional
transformation:

e 0 u v
YORDYy® — [ ]; YO — [ ]’
R R 0 R —v —u

(5.4)

—€
(5.5)
where use has been made of (3.7) and
u=I[(s+6er21"? v=[(—€e/2€]"% W¥—-1'=1.
(5.5
It is noted that u and v satisfy a strange normalization condi-
tion which, however, is simply due todet Y = — 1 (cf

3.8").
The required linear combination a, is given by Y as

follows:

[41%]_ u v ][ak ]

pat | l—v —ullar, [
where g, and g, are scaling factors to be determined by the
commutation relation, [a,,a; ] = 1. Withg, =1,

g, = — 1, the above linear combination reduce to

(5.6)

a,=ua,+vat, or a,=ua, —var,. (A7)

B. The polariton-photon Hamiltonian by Hopfield '

H= Y{f(*)aia, + 1) +gkHb b +1)

—ih(k*Yai by —acb

—ab_ +afb ), (5.8)
where f'(k %), g(k %), h (k?) are scalar functions of k %a,, a;
and b,
b, are two independent sets of Bose operators coupled
through 4 (k %). The polarization dependence of these opera-
tors is suppressed for simplicity. The equation of motion is

ay a
at, at,
; — R® ,R®
| s by
T b,
0 th ik
0 —f ih ih
R®_—
~ih ih g ol G9)
ih —ih 0 —g

where we have suppressed the & * dependence of £, g, and 4.
The matrix R ® is traceless but it is not involutional.
The characteristic equation is given by

[ROP — (P +8)RPP + (f28 —4fghHI =0,

(5.10)
which has four distinct roots + ¢; and + ¢,. To use the
theorems introduced in the foregoing sections, we regard it
as the quadratic equation for [R ®]?, which is a @ type
defined in Theorem 3.

Shoon K. Kim 2157



f+8g f—8

~f+g —f-gl
(5.10")

o= [ 72 -

where I is obviously a 2 X 2 involutional matrix. Thus, from
Theorem 3, [R “’]? can be diagonalized by an involutional
transformation as follows:

el 0]
0 é1f
where the explicit form of Z ’ can be written down immedi-

ately from (3.8). The above equation means that Z @R WZ ¥
is a direct sum of two involutional matrices of order 2 X2,

ﬂﬂmﬂiw=[ (5.11)

R® 0

0 R (2)]; [RV(Z)]2 = 6%/1’1/ =12,
2

(5.12)

ZORWDZ @ [

where R ¥ have forms similar to R ® of (5.3) and hence can
be diagonalized likewise; Y PR Y ? = diag (€,, — €,),

v = 1,2. The overall transformation W which diagonalizes
R ® via

W ~ 'R WW = diag(e,, — €,,6;, — €,) (5.13)
is given by a product of two involutional matrices,
Y® o
— Y7 @, ) _ .
W=yWz®, y _[0 Y?} (5.13)
with W ~ ! = Z®Y®, The transformation of the particle
operators is given by
a, a,
—a’, a’,
=W (5.14)
By by
Bk bty
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which diagonalizes the Hamiltonian in the form,

H= ;iel(kz)(alj-ak + D+ (kB B+ D).
(5.15)
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A general formalism is given to construct a transformation matrix which connects two matrices
A and B of order n X n satisfying any given polynomial equation of degree r, p(x) = 0; r <n.
The transformation matrix T ,; is explicitly given by a polynomial of degree (r — 1) in 4 and B
based on p“(x). A special case where B is a diagonal matrix A equivalent to 4 leads to the
general theory of matrix diagonalizations with the transformation matrix T ,,, which can be made
nonsingular with a proper choice of A. In another special case where B is a constant matrix with
the constant being a simple root A, of p “)(x), the transformation matrix T, reduces to the
idempotent matrix P, belonging to the eigenvalue A, of A. Based on the relation which exists
between T, and P,, one can construct a transformation matrix U which is more effective than
T ,4 and becomes unitary when 4 is Hermitian. Illustrative examples of the formalism are given

for the problem of angular momentum coupling.

1. INTRODUCTION

In the previous work ' (which will be referred as I), the
author has developed a theory of matrix transformation
which connects two equivalent matrices of any order satisfy-
ing a quadratic equation. It has been shown that the involu-
tional transformations play fundamental roles in transform-
ing matrices frequently encountered in physics; for example,
Dirac’s Hamiltonian in the relativistic theory of an electron
and the field Hamiltonian in solid state physices. In the pre-
sent work we shall develop a general theory of constructing a
transformation matrix T, which connects any two matri-
cesA4 and Bofordern X nviadT, 5 = BT ,p, provided that
A and B satisfy any given polynomial equation p (’)(x) =0of
degree r<n. The matrix T ,, will be given explicitly by a
polynomial of ( — 1) degree in A and B (Theorem 1). Here-
after, we shall call T, the characteristic transformation
matrix of 4 to B.

The present formalism contains the method of the
idempotent matrix > (or the projection operator method)
for constructing eigenfunctions of the matrix A as a special
case where B is a constant matrix satisfying the reduced
characteristic equation of 4. The earliest work in this line is
known as the Liverrier’s method in Faddeev’s modification
in computational methods of linear algebra. 2

The most important special case of the present formal-
ism occurs when the reduced characteristic equation of 4
has no multiple roots. In this case, 4 is diagonalizable by
similarity transformation. Let B be a diagonal matrix A
equivalent to 4. Then it will be shown that there exists a
nonsingular characteristic transformation matrix T, ; with
a proper choice of A (Theorem 2). This then provides a gen-
eral theory of matrix diagonalizations (Sec. 3).

Based on the fundamental theorems of matrix transfor-
mation given in Sec. 2 and 3, the mathematical properties of
the characteristic transformation matrices T=7,, and
TI'=T,, will be discussed in Sec. 3. One of the most impor-
tant properties is that 77T is expressed by a direct sum of
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submatrices which are common to T and 7. Based on this
property we shall construct a new transformation matrix U
which is more convenient than 7 or T and becomes unitary
when A is Hermitian (Sec. 4).

In Sec. 5, we shall give some very simple illustrative
examples for the present formalism on the matrix diagonali-
zations. The examples chosen are concerned with the cou-
pling coefficients for angular momentum wave functions.
These are chosen primarily because the eigenvalues of the
resultant angular momentums are known separately from
the vector addition theorem. For purposes of comparison,
some of the examples are taken from those introduced pre-
viously by Léwdin * in his work on the projection operator
method applied to the angular momentum wave functions.

The present formalism of matrix transformations be-
comes more effective when the degree of the reduced charac-
teristic equation is lower irrespective of the multiplicities of
the characteristic roots.

2. THE FUNDAMENTAL THEOREMS

Before introducing the basic theorems we shall give
some preparations. Let 4 be a matrix of order n X n which
satisfies a monic polynomial equation of degree r (<n),

PPX)=x"+ex" "4 4c,=0, .10
with constant coefficients. From these coefficients we define
a k'™ degree polynomial by

X =xpexr "4t k=0, 1, r. Q2.1)

Then, x () = p (’)(x) so that 4 () = P (’)(A )=0.Let M (n
X n,p M(x)) beasetofn X n matrices, every member of

which satisfies p(’)(x) = 0. Then, we can write for the matrix
A

AeM(n X n,pPx)). 2.2

When p (’)(x) = 0 is the equation of the least degree
satisfied by the matrix A, it.is called the reduced characteris-
tic equation of 4. To avoid confusion, the characteristic

®© 1979 American Institute of Physics 2159



polynomial of 4 given by the secular determinant is denoted
by

D™(x) =det[x] — 4], 2.2
where [is the n X n unit matrix. The multiplicity of aroot A,
of this equation is called the degeneracy of the eigenvalue A,
of 4. With these preparations we state the basic theorem of
matrix transformations:

Theorem 1: Let A, Be M (n X n, p P(x)) with p P(x) of
(2.1). Then 4 and B are connected via

A TAB = TAB B,
with T, given by

(2.3)

r—1 r—1
Typ= 3 47" "B =5 4®B 1~k (24)
k=0 k=0

where 4 Y and B * are the k " degree polynomials defined
by (2.1"). If T, 5 is nonsingular, then the matrices 4 and B are
equivalent.

The proof is elementary. The second equality of (2.4) is
an identity which follows from the definition of x**? and the
rearrangement of the summations. Equation (2.3) follows
from 4 ? = B and the recursion formula,

xO=xx* Ve, k=127 —1,
x©O =7,

where x stands for 4 and B. Q.E.D.

It should be noted that the above theorem can be gener-
alized by replacing the assumption 4 ” = B’ = 0 by
A® = B, since only the latter condition is needed for the
proof. This generalization may be useful when r is small.
However, we shall not consider this generalization any fur-
ther in the present work.

1t is obvious that if 4 and B are not equivalent then 7,5
is singular and also that the equivalence of 4 and B does not
guarantee that T, is nonsingular. We may call T, the
characteristic transformation matrix of 4 to B which may or
may not be singular. It shouid be noted that T, ; -7, in
general except when 4 and B commute or 7 = 2. For the
latter case

Tyy=Tga=A+B— A +41)] 2.5
where A, and 4, are the characteristic roots of A (B). This
simple special case has many important applications which
have been extensively discussed in the previous work. '

From (2.3) we can show that the product 7', , T, com-
mutes with 4 since

T4sBTps =T, pTpsd = AT 15T p, (2.6)
If A and B are Hermitian, we have T, = T 7, where T g, is
the Hermitian conjugate of T, so that T, Ty, is positive

semidefinite.
The more general transformation matrix ¥, which

connects A to B through

AV 5=V, B @7
is given by
Vap=FuaT4p =T, 5Fp 2.7)

where F, (Fp)isafunctionof 4 (B ). Inpractical applications
it is often useful to introduce the special case where F, = 4,
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Fy = B. Then,

r—1
Vip=AT5=TspB= —c"+ 2 A4, _BC—H

k=1

r—1
=—-c+ Y 4" YB, B, (2.8)
k=1
which becomes, ! for r = 2,
Vis=AB — A A, 2.8

It is most desirable to give some simple criteria for the
existence of a nonsingular characteristic transformation ma-
trix 7,5 . We have established such a criterion in a simple
special case where 4, B, and T’y are involutional in the pre-
vious work I. We shall also establish it for the most impor-
tant special case of a matrix diagonalization in Sec. 3. How-
ever, even if 7, is singular, Theorem 1 can provide very
significant consequences in some cases. A typical example is
the case where T, ; becomes an indempotent matrix with B
being a constant matrix. We shall now discuss this special
case.

A. Idempotent matrix

Let4, Be M (n X n,p”(x)) and 4,, 4,, -, A, be the
roots of the polynomial p \"/(x), of which some of the roots
could be equal. Then, if B is a constant matrix equal to 4,7
where A4, is one of the characteristic roots of 4, it can be
shown that the characteristic transformation matrix 7,
equals the quotient of p (’)(x) and (4 — A, 1), namely,

Tp= J] A=4,1) B=4,L

oFEY
If we asume further that p’(x) is the reduced characteristic
polynomial of 4, and 4, is its simple root, then T, , becomes
proportional to the idempotent matrix P, belonging to the
eigenvalue 4, of 4 defined by

P =y, II A-21,1), x.= gll(/lv —4,)50. (2.10)

oFEY

(2.9)

Let the degeneracy of the eigenvalue A, be n,,. Then, there
exist n,, and only n,, linearly independent columns (rows) in
P, which provide all the eigenvectors of 4 belonging to the
eigenvalue A, since the rank of P, is n,,, which can be seen
easily from Jordan’s canonical from of P, (see also 3.8). The
calculation of these eigenvectors is facilitated by the follow-
ing formula,

P.=x! 01;[ M-Ai,0, x = ag A, —A,)=£0.(2.10)

where use has been made of (2.4), (2.9) and (2.10). If all the
roots of the reduced characteristic polynomial p”(x) are dis-
tinct, then we have the orthogonality and the closure
relations

S Po=1, vu=12r (211
v=1

where 8,,, is Kronecker’s delata. In particular, when n = r
and p®(x) becomes the characteristic polynomial D (x) of
A, and we have a set of convenient recursion formulas,

P,P,=5,P

v© v
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AW =44 "V 4 e, = —k “ltrdd* =Y,
k=12,n, (2.12)
where tr --- denotes the trace. The set of Eq. (2.10") and (2.12)

constitute Liverrier's method in Faddeev’s modification 2
for calculating the eigenvectors of 4.

3. THEORY OF MATRIX DIAGONALIZATIONS

We shall now develop a general theory of matrix dia-
gonalizations based on Theorem 1. The condition for a ma-
trix A4 to be diagonalized by a similarity transformation is
that the reduced characteristic equation of 4 has no multiple
roots. This condition may be expressed as follows:

AeM (n X n,p"(x)

where p!")(x) denotes a polynomial of degree » with all dis-
tinct roots. With this preparation we state the basic theorem
for matrix diagonalizations.

Theorem 2: Let A€ M (n X n, p”(x)) and A be a diag-
onal matrix equivalent to A. Then, there exists at least one
diagonal matrix A which makes the characteristic transfor-
mation matrices T =T, and/or T= T, . nonsingular, so
that

T 'AT=A, and/or TAT ~' = A. (3.1

The proof of this theorem is somewhat involved. Before
proceeding with the proof we shall give some preparations.
From (2.4), the explicit forms of 7 and T are give by

T=T,, = iAr——l—kA(k): SA(k)Ar—l—k

k=0 k=90
(3.2)
T T — Ar—l—kA(k)_ A(k)Ar~l—k
A4 Z kZO
In a special case where r = 2, we have
T=T=A4+4+A—(@, +4,)I, (3.3)

which has been extensively studied in the previous work I.
Hereafter, we shall call T and T the characteristic transfor-
mation matrices of 4 even if they are singular. It is obvious
that the column (row) vectors are eigenvectors of 4 even if
T (T) is singular, unless they are null vectors.

Now a diagonal matrix A equivalent to 4 is character-
ized by a sequence of the whole set of # characteristic roots of
A. Let the distinct characteristic roots of 4 be 4, , 4, , -, 4,
and their respective degeneracies be n,, n,, - #,. Then
n; + n, + - + n, = n. The matrix elements of A may be ex-
pressed by

Ag=4 Oy v=12,wr st=12,n (3.4

where 8,, is the Kronecker delta and v = g(s) defines the
sequence of the characteristic roots on the principal diagonal
of A. The inverse g ~ !(v) is a multivalued function of v
which gives the ,, indices of the columns or the rows belong-
ing to A,.. It is obvious that the intersection of two sets of
indices belonging to two different roots 4, and A,. are null,

g ') =6, forvy. (3.5)

This simple and obvious property plays an important role in
the proof. If a sequence v = g(s) is such that the equal roots

v = g(s)
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are placed on the consecutive positions, then the correspond-
ing A is called a standard form of A.

Now, let us denote the j** column (row) vectors of any
matrix M by M., (M,.). Then we can state that T.; (7}.)
belongs to the eigenvalue 4, of 4 if v = g( /). Moreover, from
(2.10") and (3.2) we have

T'j =/Yv[Pv]'j’ 7} =XV[PV]j‘; v :g(j) _]= 1,2,.-n,

3.6)
which are the crucial relations for the proof of the existence
of a nonsingular 7 (f" ). One has to show that all the » col-
umns (rows) of T%; (T} ) can be made linearly independent
with a proper choice of the sequence v = g( ).

By assumption, there exists a nonsingular matrix G
which diagonalizes 4. Then G also diagonalizes P,,,

G~ 'PG=D, v=12,r, 3.7
where D, is a diagonal matrix which has n, unit elements,
[Dv] i= 5v,h (1)5lj! (3-8)

with v = A& (§) which defines the sequence of A, in the diag-
onal matrix D = G ~ '4G. Substitution of P, = GD .G ~"
into the first of (3.6) yields

Z G'k [G-l]kj; ng—l(V)»
keh Y (v)
where G., is the k' column vector of G.
Since G is nonsingular, all the column vectors G., are
linearly independent. Hence, if the n, X n,, coefficient ma-
trix 4 @ of (3.9) with elements.

AP =16""1,; keh ~'(v), jeg~'(v),  (3.10)

is nonsingular then the n,, column vector T';,jeg ~ '(v), are
linearly independent. Now, det [4 ] is nothing but a minor
of det[G ~']. Thus, if we apply the Laplace theorem on ex-
pansion of a determinant to det [G ~ '] with respect to n,,
columns given by 4 ~ '(v) changing v successively from

v = 1 tov = r, we must have at least one set of nonvanishing
minors such that

I] detla ©)s20
v=1

T, =y, (3.9)

(3.11)

with conditions

vk ') =0, g g () =0, for v£v.
(3.12)

This means that there exists at least one sequence v = g(j) of
A, defining A which makes 7 nonsingular for a given se-
quence v = h (k).

_An analogous proof holds for T In fact, the row vector
T,. is given by

T.=y, Y GilG '], ig (v, (.13)
keh ~'(v)
proceeding as before we can find a set of nonvanishing mi-
nors of det[G ] which determines a sequence v = g'(/) of 4,
defining A which makes T nonsingular. Q.E.D.
It is noted that the proper sequence v = g(i) and

v = g'({) for Tand T respectively need not be the same except
for » = 2 unless there exists a certain symmetry in A. In most

cases, however, one can find such a sequence for which both
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Tand T are nonsingular. The number of ways defining
v = g(¥) which makes T nonsingular is in anywhere between
1 and n!/(n,!n,!+, n)). The minimum number occurs in the
exceptional case where A4 is triangular. In this case the trans-
formation matrix T'and 7 are also triangular similar in shape
to that of 4, and the diagonal elements of 7'and T are given
by

T,=T,=

s=1,2,. 1, (3.14)

2 (A ss /1 a')’
o£8(5)
where g(s) describes the assumed sequence of the character-
istic roots in A (see 4.2). Thus, to obtain nonsingular T'( f‘)

one must take A equal to the diagonal part of 4, i.e.,
Ass = /1 g(s) *

It is noted here that an alternate form of T’ (f”) is of
interest which has the form analogous to the indempotent
matrix P, . Let @ be a cyclic permutation of A ,4,,-,4, 0on the
principal diagonal of A;

0 = (A1 Az, (3.15)

We apply 6 on A repeatedly to generate a set of diagonal
matrices A; by

A=ApA, =64, A, =04, | (3.16)

Then using the relation between the coefficients and the
roots of p!")(x) = O we can show that

PA) =04 [T A—A) =0, [] A—A)=0,
o . (.17)

where O, , and O, , are operators which order the products
of 4 and A in the orders written in the subscripts; for
example,

0,444 —A)A —A)=A7—AA, +A)+ A A,
(3.18)

OAA(A —_Al)(A —A2)=A2‘(A1 +A2)A +A1A2»

Then, (3.17) gives

T=0,4, H A—-A), T=0,, H A~A),
=2 =2

which satisfy AT = TA and T4 = AT, respectively. We can

easily show that these satisfy the expansion formula of 7"and

T given by (3.2).

When we have found a proper sequence of A, in A
which makes T(f”) nonsingularitisalways possible toreduce
A into a standard form where the equal roots are placed in
the consecutive positions by unitary transformation of 4 and
A which is merely a simultaneous renumbering of the col-
umns and the rows of 4 and A. Hereafter, we shall assume
such a renumbering has been performed so that the proper A
takes a standard form unless otherwise specified. As one can
see in the practical applications, a standard sequence is fre-
quently a proper sequence for a given matrix 4 without any
simultaneous renumbering.

(3.19)

4. THE BASIC PROPERTIES OF T AND T

We shall discuss the basic properties of the characteris-
tic transformation matrices 7 and T which stem from their
relations with the idempotent matrices given by (3.6). Then,
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these properites will be used in Sec. 5 to construct a new
transformation matrix U which is more effective then T(T)
in the sense that its inverse is written down immediately and
it becomes unitary when 4 is Hermitian. Let v = g(j) be any
sequence of A, in A equivalent to the matrix 4 e M (n X n,
pU1(x)). Then from (3.6) we have

0, for g(i)4g()),
x. TP, for v=g() =g(y
where 7™ isan, X n, submatrix common to T and T

TY=T,;= T; ijeg™'). 4.2)
These are remarkable properties of T"and T. If we assume a
standard form for A, we can express it in the form of a direct
sum:

A=A eA, L, 00l I, 4.3)

where I, isthe n,, X n, unit matrix. Then TTand TAT also
take the forms of direct sums:

[Tf],-jz{ (@.1)

IT=y,TOey, TP @y, T, (4.4)
TAT = A, TV 0 Ay, TP @ 0 A x, T (4.5)

These equations suggest an alternate method of diagonaliz-
ing the matrix 4 when both T and T are nonsingular. We
may regard y, T $ as the scalar products of two sets of vec-
tors {T } and {T.;} belonging to A, of 4. Then the mutual
orthogonalization of these two vector sets leads to the de-
sired diagonalization of 4 (see Sec. 5).

From (4.4) we have for the determinant of TT

detTT = 1‘[ y¥odetT ™.

v=1

(4.6)

Thus, if both T and T are nonsingular, then all T®,

v = 1,2, r, are nonsingular and vice versa. If one of T® is
singular, at least one of 7and 7 must be singular. In a special
case where one of 7 is a null matrix and 7 is nonsingular,
then all the column vectors of T belonging to the eigenvalue
A, are also null, because

S 7Ty =0,
k=0

Hereafter, we shall assume that all 7 are nonsingular un-
less otherwise specified.

If the matrix 4 is Hermitian, then T=T+and TT
becomes positive definite. Hence, the following quadratic
forms with respect to a set of complex variables {x;eg ~'(v)}
for each v becomes positive definite,

Xv 2 xr T x, E":lszixi‘2>09
K= T

ijeg '(v)
where x* is the complex conjugate of x; and the number of
the variables x; is arbitrary as long as the indices / belong to
g ~ '(v). Consequently, all the principal minors of x, T are
positive; for example, the signs of all diagonal elements of
T are given by the sign of y, :

for all jeg~'(v). 4.7

(4.8)

v =1,2,,r. 4.9)

x TP =3 |Tal*>0,
k

If any one of the diagonal elements, T'; is zero, then T be-
comes singular and the ith column and row become null.
These properties, which come from (4.8), will be used to
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diagonalize T by the Gaussian elimination procedure dis-
cussed in Sec. 5.

5. CONSTRUCTION OF A TRANSFORMATION MATRIX
U

It has been shown by (4.4) and (4.5) in Sec. 4 that the
complete diagonalization of the matrix 4 can be achieved by
reducing each submatrix y, 7 of order n, X n, into the
unit n, X n, matrix. Obviously, the present formalism can
be used for this. However, it is more effective to use the
method of successive elimination since y, T}’ can be regard-
ed as the scalar products of two vector sets {7;.} and { T, }
according to (4.4). The method is based on the well known
Gaussian procedure, which transforms a square matrix 7
into a triangular form by another triangular matrix of the
opposite shape. It serves as an effective algorithm for the
Schmidt orthogonalization process. Previously, Lowdin *
used the elimination method in his well known work of the
projection operator method in constructing an orthogonal
set of angular momentum eigenfunctions, where he has
based his argument on the idempotent nature of the projec-
tion operator and the “‘turn over rule” of the Hermitian
character of the operator. We shall see that the present meth-
od is free from all these assumptions.

Let us introduce two nonsingular matrices C*? and
C“ofordern, X n, and diagonalize T via C T MC®,
To this end, we put

S(») T(s)c(\) S(v) CO)T(") (5.1)

Then, we require S to be, say, a lower triangular form
assuming an upper triangular form with unit diagonal ele-
ments for C . Likewise, we require §™ to be upper triangu-
lar assuming a lower triangular form with unit diagonal ele-
ments for C*¥. It is well known that there exists a unique
solution for each pair of {§, C™} and {§®,C®},if T
satisfies the condition that a certain number of the principal
minors of 7 are nonvanishing. This condition will be dis-
cussed later by (5.12). From (5.1) we have

COTOCH = CI§H = §0C o) (5.2)
which is diagonal, since the second equality means that the

product of upper triangular matrices is equal to the product
of lower triangular matrices;

[COTOC™M), =6,850=65,8Y; ijeg ') (5.3)
It is obvious that the above argument holds if we interchange
all the upper and lower triangular forms.
When 4 is Hermitian, 7 is also Hermitian so that it is
only necessary to construct one of S and S since
SO — =[$§™]+ é(v): [c™]+

Now we define a pair of transformation matrices of or-
dern X n by

§S=7TC, S§=cCT, (5.4)
where C and C are direct sums of C™ and C,
C=3 aC» C= 3 oC®, (5.5)

v=1 =1

Then Sand § coincide with S and §” respectively in each
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degenerate subspace of 4, and
Z ‘S:ikskj =0 XgSi 1= 1,2,n,
k

where use has been made of (4.4) and (5.3) ~(5.5), and y,
means y, with v = g(}j).

Finally, the required transformation matrix U which
diagonalizes 4 via U ~'4U = A is given by

(5.6)

with
Nj_2=/‘yg(DSﬂ;&0, (U ‘1] =U, = 1/(NXg(,))
ij= 12, n. (5.8)

Here it is essential for the existence of U that S, -0 for all ;.
As will be shown in (5.12), this condition is equivalent to the
condition that the Gaussian elimination procedure assumed
in (5.1) is valid. It is also noted that the argument of each
normalization constant V; has to be assigned appropriately,
once for each index. If necessary, one may avoid this arbi-

trariness using S ~ ' given by
[s—'1,=NIS, (5.9)
instead of U ~ . In a special case when there exist no degen-

eracies in the eigenvalues of 4, we have S = T'and § = T'so
that

U‘]: TU'N]’ [U_l]“Nlep N *Xg(j)T,U’

(5.10)

Finally, when 4 is Hermitian, U becomes unitary and

Nj? = XeSy>0s (5.11)
which follows from (5.6) since § =5 *.

Now we shall discuss the condition that the Gaussian
elimination procedure assumed by (5.1) is valid. To this end,
we first note that the diagonal elements S ¢ of (5.6) are relat-
ed to the determinants of the leading submatrices of T by

ij=12-n

szvl La+1 — det[TfJV), Lj=a+la+2-a+ q]

t=1

q= 1’2""’”\/’ (512)

where we have assumed for definiteness that S is lower
triangular and a is the minimum index of the columns and
rows of T for T, It is well known that the Gaussian elimi-
nation procedure assumed by (5.1) is possible on condition 2
that all the determinants on the right hand side of (5.12) for
g = 1,2,---, n,, are nonvanishing. We have already shown by
(4.8) that this condition holds when the matrix 4 is Hermi-
tian. In the general case, we have shown by (4.6) only that
det 7540 for all v with the assumption that both Tand T
are nonsingular. Accordingly, in order to satisfy the above
condition it may be necessary to renumber the columns and
rows of 4 and T'in each degenerate subspace where the num-
bering has so far been arbitrary. If the renumbering does not
work we simply take

CO= [y, TV, C»= I, (5.13)
in(5.1). Then S = Tand S = T ~ ! from (4.4), (5.4) and
(5.5).

Frequently, we encounter the problem of simultaneous
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transformation of a matrix A which commutes with the ma-
trixdeM(n X n,p [’](x)). Then, we have the following
generalizationof (4.5),

0, for g()#g( ),
THT ], = .
[ Iy lxv[HT],-,:xV[THL,, for v =g@@) = g()).
(5.14)

In terms of the transformation matrix U, these equations
give

[U-'HU], =0, for g()#g(),
[U- IHU]U =(l/U;) z z C:('Z)Hkk'Uk'j

k<ik’>j

(5.15)

={1/Uy) kz z (U] Hy C,U, for i,jeq—'(v),
>ik'<j

where for definiteness it is assumed that in the subspace of
A,, C® and U are lower triangular and C? and U ~ ! are
upper triangular. From (5.15) one can seen that the off-diag-
onal elements of RHS of (5.15) do not contain any diagonal
elements of A. This is important since it prevents the off-
diagonal elements from becoming large. It was Lowdin *
who first recognized a result analogous to this in his work on
the projection operator method. The present treatment is
more general and explicit.

6. ILLUSTRATIVE EXAMPLES

In order to give some illustrations of the present formal-
ism we shall discuss some very simple examples. In the actu-
al calculation of the transformation matrix 7 or T , one may
simplify the calculation by using the fact that any similarity
transformation which diagonalizes a matrix 4 e M (n X n,
p1(x)) also diagonalizes its linear transform,

A—ad + b, (6.1)

where a and b are constants and a=40. It can be easily shown
that the matrix U given by Eq. (5 7)is invariant for this linear
mapping while the matrix T(T) is mapped into "~ 1T(T)
where r is the degree of the reduced characteristic equation.
Hereafter, we shall freely use such a linear mapping.

The examples chosen here are concerned with the cou-
pling coefficients of the total angular momentum wave func-
tions, for which the eigenvalues are known from the vector
addition theorem. For purposes of comparison, some of the
examples are taken from those previously introduced by
Léwdin * in his well known work on the projection operator
method.

We shall use a standard set of notations: L and S are
orbital and spin angular momentum, respectively, and
J = L 4 S. Their ladder operators are defined by
M, =M, + /M, where M stands for J, L, and S.

A. A spin system?

Consider the total spin of a four electron system with
S, = 1. Let @ and 3 be the elementary spinors. Then the
basis of representation is given by
6, =aaafl ¢,=aafa ¢,=aafa ¢,=pPoaca, (6.2)
where the particle coordinates in order are suppressed. The
allowed total spin quantum numbers are .S = 1 and 2 with
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degeneracies 3 and 1, respectively. To construct the eigen-
functions of S 2, we shall take the matrix representation of
IS_ S, || given by the basis of (6.2) as the matrix A4:

1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

The relations between the total spin quantum number
S, 4,,, the eigenvalues of 4, n,,, the degeneracies, and y, of
(2.10) are given by

A=|s_s | = (6.3)

S iv nv Xv
v=1 1 0 3 —4. 6.4)
v=1 2 4 1 4
The reduced characteristic equation of 4 is
A*—44=0. (6.5)

Choosing the following standard form for the diagonal
matrix,

A = diag[0,0,0,4], (6.6)

we can immediately write down the transformation matrices
T and T using (3.3),

-3 1 1

T=T=A+A—4l=

6.7)

One can easily see from this result that 7" is nonsingular for
any sequence of the characteristic roots in A. The subma-
trices 7" and T® corresponding to 4, and A, are shown by
the dotted lines in (6.7). They are symmetric since A is sym-
metric. Note that the signs of the diagonal elements of T
coincide with those y; and y, satisfying (4.9). By successive
elimination of the elements above the principal diagonal of T’
in the first three columns leaving the first column intact, we
obtain the matrix .S defined by (5.4) for the present case.
Then normalizing each column of S using (5.7), we obtain
the unitary transformation matrix U,

- 3 1

V12 2

Sy

(6.8)

1 1 1 L
Viz Ve V2 2 _
From (6.4) and (6.6), the first three columns of U give the
coupling coefficients for the eigenfunctions belonging to
A, = 0orS = 1. The last column gives those for 1, =4 or

S = 2. These are in complete agreement with Lowdin’s re-
sult based on the projection operator method. The present
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method is definitely simpler than his method for this exam-
ple, since the latter requires construction of two idempotent
matrices.

B. The atomic wave functions?

The problem is to construct the atomic state wave func-
tions for a given electronic configuration. The present for-
malism may give a very general scheme to handle this prob-
lem. However, we shall postpone the general treatment and
consider a typical example of constructing L ? eigenfunc-
tions for a given configuration d 3, For simplicity, set L,=2,
then the basis of representation is given by a set of the six
Slater determinants:

¢, =Q11), ¢,=(0[0), ¢,=I|1), ¢,=(10]1),
és=(22|2), ¢¢=(11]2). (6.9)

Here, the notation (21 IT), for example, is an abbreviation of
the Slater determinant,

(1|1) = (nd 2a, nd la, nd1pB), (6.10)

where each one-electron function is characterized by four

2, and 2 respectively. We take
A=3L_L | —sI

3
0
o Ve Ve -1
0
0

~2 3 0 0 0 0
- 3 Ve o o

~ 30 Ve 2 2
N o Ve
2

0

(6.11)
Then, the relations between L, A, n,,, and y, are given by
L AV nV XV

v=1 5 07 1 540,
v=2 4 2 1 140,
v=3 3 —2 2 108,
v=4 2 -5 2 _—2%, (6.12)

The reduced characteristic equation of 4 is given by

quantum numbers, (n, [, m; m,). From the vector addition A*—24°—3947 1844140 I=0. (6.13)
theorem we expect the total orbital angular momentum Assuming a standard form for A,
quantum number L tobe 5, 4, 3, and 2 with degeneracies 1, 1, | A=diag[1,2, =2, —2, —5, — 5], (6.14)
we obtain, from (3.2),
— 18 -3 -21 —9Vs 18 36 ]
o -4 ] Qe Qe — 18 =36
] % rioes el m _n
Ve Ve i-oVe s foaVe ave | “
18 24 18 —18Vei —138 60
[ 36 48 —36 0 i 60 —48 i |
where the 2 X 2 submatrices surrounded by the dotted lines are 7™ and T correspondingtod; = —2and 4, = — 5,

respectively. We orthogonalize the third and the fourth columns of T'by bringing 7 to an upper triangular form and likewise
for the fifth and sixth of T"and obtain the transformation matrix S of (5.4). By normalizing each column of S using (5.7), one

obtains the unitary transformation matrix U,

[L _ [z _ [t _ [T 1
30 140 3 12
3 _ [z 0 _
10 35
3 3 1 _ [ri
10 140 3 12

U=

\/I [T [T
5 70 2
1 3 0 Y R N
30 35 3 08 2
2 2 [t 0

|V 15 35 3
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From (6.14) and the conversion relation (6.12), the coupling coefficients for the eigenfunctions of L2 are given by the columns

of U as follows:

UieL =5, U,eL =4, (U,,U,)eL =3,

(U, U )el = 2.

6.17)

The last two columns corresponding to D * are in complete agreement with Lowdin’s result * based on the projection operator
method. He did not calculate the rest, which requires further calculation of three more idempotent matrices.

C. The vector coupling coefficients

The vector coupling coefficients for two angular mo-
menta or simply the Wigner coefficients * have completely
been worked out by Wigner based on the theory of group
representations. One of the reasons for choosing this well
known problem is to incorporate the sign convention of the
coupling coefficients due to Condon-Shortley © and
Wigner ° into the present formalism. For the sake of simplic-
ity of notation, we may state that the problem is to construct
the eigenfunctions of J 2 from the direct product basis func-
tions |/sm;m_) of the two angular momenta L and S, with />
s and a given m = m; + m_. Then, the order of the matrix
|2 is (25 + 1) X (25 + 1) in a subspace of a given set of /, s
and m. The present formalism can give a very general treate-
ment for this problem. However, we shall discuss here very
simple special cases of s = 4§ and 1. In actual calculation it is
simplest to take A = ||L-S'||. There is no degeneracy in this
problem. Accordingly, we may take the proper sequence
v = g(i) in A such that v = i,

1.5 =1 case

The matrix4 = ||L-S || isof order 2 X 2 described by the
basis of representation.

¢ =ILzm— 35, d=I[im+35 -3 (6.18)
In this special case of » = 2, we can write down the T matrix

where we have written Y instead of U following the notation
used in the previous work I. This matrix ¥ has the IUH
symmetry (involutional, unitary, and Hermitian) and is real
and symmetric. Despite these symmetries, the columns of Y
do not satisfy the sign convention of the Condon-Shortley
and Wigner. In fact, the Wigner coefficients are given by the
columns of U = Yo wl ere o = diag[1, — 1]. Hereafter, in
the calculation of the vector coupling coefficients we shall
take the signs of the normalization constants in (5.10) such
that all the row elements of U corresponding to the mini-
mum m, (= — s) become positive. Then we can show that
the matrix U given by (5.10) satisfies the sign convention of
Condon-Shortley and Wigner > (see the next example).

2.S = 1case

In terms of the basis of representation with a given set of
Ls=1m =m,

¢I = !l’l!m - 1’1>s ¢2 = .l,l,m,O),

¢3 = |l’17m + 19 - 1>9
we can easily write down the matrix elements of 4 = ||L:S
which satisfies the characteristic equation

6.21)
I’

without further calculation using (3.3) once the matrix ele- A3 424> — (P +1-DA—1({+ DI=0. (6.22)
ments of 4 are known. The eigenvalues of 4 are 4, = 1/, The relations between j, 4, and y, are
Ay, = — L + 1) correspondingtoj=1! +4,j=1—4re- . P)
spectively. Taking L J IV Xy
A =diag [3, — 4 +1)] (6.19) P 1 1 (l+ 252141}1)’ (6.23)
we have, from (3.3) and (5.10) with the positive square roots - 3’ I —a ’
for the normalization constants, v I ! ¢+1D 1@l +1).
(Ut mat 1/2)\17 I —m+ 1/2\12 Assuming v = /, namely,
(T) <——27er—) A =diag[l, — 1, — ({ + 1)}, (6.24)
= I—m+ 12\ (1 +m4+ 1/2)1/2 ’ we can calculate the matrix T from
( 2141 ) B 20+1 T=A>4+AAV + AP, (6.25)
(6.20) J
Then, from (5.10), we have
B ((H—m)(l+m+l))1/2 _((ler)(I—m-&-l))‘/2 ((l—-m)(l—m-&-l))l/z'l
20+ 121+ 1) 204+ 2204+ 1)
U ((1—m+1)(1+m+1))1/2 m _((1+m)(1——m))1/2 (6.26)
B (+ D@+ 1) ¢+ 1) 121+ 1) ’ '
((1—m)(1—m+1))1/2 ((l—m)(l—km—{»l))l/2 ((1‘}-m)(l+m—+—l))‘/2
L\ 20+ DRI+ 1) 2+ 1) 220+ 1) A
where the signs of all the last row elements corresponding to the minimum m (= — 1) are made positive to satisfy the

convention of Condon-Shortley. It is noted that the column vectors U.,, U., and U., give the coupling coeflicients correspond-

ingtoj=1 4+ 1,1, and ] — 1, respectively.
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Given a finite group G and a subgroup K of index 1 or 2, a method is developed for
finding all the finite groups G (up to equivalence) such that any semiunitary projective
representation of G can be lifted to a semiunitary representation of G. The method is

used in simple but interesting groups in physics.

1. INTRODUCTION

The aim of this paper is to examine in a systematic way a
new method for obtaining all the semiunitary (unitary/an-
tiunitary) projective representations of a finite group G from
the semiunitary representations of an auxiliary finite group
G!

It must be pointed out that the case of a connected Lie
group has been considered in an earlier paper? and that of a
nonconnected Lie group will be treated in a forthcoming
paper.

This paper is motivated by the fact that the semiunitary
projective representations arise in quantum physics as a con-
sequence of Wigner’s theorem® which implies that any sym-
metry group of a quantum system must be realized by means
of a semiunitary projective representation in the space of the
states of the system.

The method that will be developed here reduces the
study of all the (semiunitary) projective representations of a
finite group G, to the problem of the (semiunitary) represen-
tations of its auxiliary group G once that this last group is
known. This method is simpler than the standard methods
that are usually applied when one considers unitary repre-
sentations (via, e.g., twisted algebra*®).

It is worthwhile to point out that this method is differ-
ent from the well known procedure of obtaining those se-
miunitary projective representations of a group G corre-
sponding to a given (cohomology class of ) factor system,
from the semiunitary representations of the middle group of
the associated extension of G by the circle group.® Notice
that in our approach only one group is used while in Ref. 6 a
family of auxiliary groups is employed.

The study of unitary projective representations of a fin-
ite group was done almost exhaustively by Schur’ in a series
of three papers. Schur showed that the unitary projective
representations of G can be obtained from the unitary repre-

“This work has been supported by Instituto de Estudios Nucleares.
"Partly from the Ph.D. Thesis quoted in Ref. 1.
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sentations of a new finite group G, called the representation
group (darstellungsgruppe) for G. However this group G is
not univocally determined by G.

Janssen® proved recently that a similar result holds for
the more general case of semiunitary projective representa-
tions of a finite group G. Then the following question arises;
Why reconsider an old problem already solved? The reason
is twofold: Firstly, Janssen’s method of construction of the
representation group cannot be extended to topological
groups while our method permits this generalization. Sec-
ondly, we give a new general method (without any reference
to the defining relations) of finding all the representation
groups, and further they are classified. Consequently our
method allows us to choose in each case the simplest repre-
sentation group: This results in a simplification of the calcu-
lations needed in some particular problems (see, e.g., the
worked example in Sec. 9 for the Vierergruppe).

Itis interesting to point out that this new simple method
may be useful in several fields, like theoretical physics, solid
state, and perhaps quantum chemistry. Taking into account
that semiunitary projective representations of groups appear
in fundamental problems in such fields whereas cohomology
theory is not usually in the mathematical background of
their practitioners, we confine ourselves to a relatively ele-
mentary level of this theory, which suffices for our purpose,
and we have avoided the use of more advanced techniques—
as, e.g., the spectral sequences—with whose help some of the
results contained in this paper could be easily obtained.

In Sec. 2. we establish some basic definitions and nota-
tions, due to the fact that, unfortunately, the terms involved
have different meanings for different authors. The most im-
portant properties concerning these definitions are included
in the Appendix. In Sec. 3. the concept of splitting group is
defined and characterized, and we classify the representa-
tion groups in Sec. 4. Section 5 deals with representation
groups. In Sec. 6 we develop a new general method for ob-
taining all the representation groups for any finite group G;
we discuss in Sec. 7 the characterization of the different
classes of representation groups and we give a theorem con-
cerning the unicity of (splitting classes of ) representation
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groups. In Sec. 8 the connection between semiunitary projec-
tive and linear representations, in particular the irreducible
case, is considered. Finally, Sec. 9 applies the present theory
to some examples of great interest in Q.M. We do not enter
here in discussing the possible applications of semiunitary
projective representations.’

2. NOTATIONS AND BASIC DEFINITIONS

In the following H will denote a separable complex Hil-
bert space, and H the projective space associated with H. The
group of unitary or antiunitary operators in H (the so-called
semiunitary group) willbedenoted I” U(H )and U(H ) will be
the unitary subgroup. By 7 we mean, as usual, the circle
group U(1), identified with the center of U(H ) (unitary sca-
lar operators e “I'); the factor groups I" U(H )/T and
U(H )/Twillbedenoted PI" U(H ) and P U(H ), respectively.
We call 7 the canonical epimorphism
m ' U(H) — P UH).

Let G be a finite group (noted multiplicatively) and K a
subgroup ofindex 1 or 2 of G. An action of G on T denoted by
*K, will be defined by

A —»/1, geK,

(*K) @) =
A—>A* geG — K,

where A * stands for the complex conjugate of AT If no risk
of confusion arises, we use A — A € as a shorthand notation
for the action *K. The corresponding Eilenberg-MacLane
(normalized) cochain complex as well as the corresponding
subgroups and quotients '° are denoted C +(G,T), etc.
Whenever X is clear from the context, we shall write s in-
stead of of *K, and when K = G we will also omit s.

Next, let us introduce some definitions that will be used
in the following sections.

Definition 1: A semiunitary representation (hereafter
SUR) of (G,K) is an homomorphism D:G — I"U(H ) such
that D(K)CU(H)and D(G— K)CI'UH) — U(H).

Definition 2: A semiunitary projective representation
(SUPR) of (G,K') is an homomorphism P: G — PI'U(H)
such that P(K)CPU(H ) and P(G - K)CPI'U(H)-

— PU(H).

Definition 3: A semiunitary multiplier representation
(SUMR)of(G,K)isamapR : G — I"'U(H )such that woR is
aSUPR of (G,K)and R (1) = 1.

Definition 4: ASUMR, R of (G,K ) is said to be a (multi-
plier) lifting of the SUPR P of (G,K ) if moR = P. In this case
one also says that Pis the SUPR of (G,K ) associated with R.

Definition 5: Let G be a finite group and p:G — G an
epimorphism. If Pis a SUPR of (G,K ), a SUR, R of (G, K)
[with K = p™! (K')] is said to be a (linear) lifting of P [with
respect to the “covering” (G,p)] if Pop = 7oR.

Other basic concepts, as equivalence, irreducibility,
etc., are included in the Appendix.

3. THE SPLITTING GROUPS

Almost everyone knows that, in general, not every
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SUPR of a finite group (G,K ) admits a (linear) lifting to a
SUR of (G,K ) (with the identity epimorphism). Here we con-
sider the possibility of finding a group G (and an epimor-
phism p:G — G ) such that any SUPR of (G,K ) can be lifted
to a SUR of (G,K).

Definition 6: Let G be a finite group and p:G — G be an
epimorphism. Then (G,p) is said to be a splitting group for
(G,KX) if any SUPR of (G,K) can be lifted to a SUR of
(GK)K =p'(K)).

The term “splitting group”’has been used by Moore'! in
another slightly different context, and also by Cattaneo."

From now on, and when K is clear from the context, a
SUPR of G will be one of (G,K'), and so on.

Next we show that to every “general” splitting group (if
it exists) we can associate another splitting group of a more
restricted kind, namely extensions of G by Abelian finite ker-
nels A with a definite action — K of G on 4 given by

a—a,

(-K)@® =

a—a’l,

gek,

geG — K.

This task is carried out in two steps. First let us show
there is no real loss of generality (in the above sense) if we
demand the kernel of the epimorphism p:G — G to be Abe-
lian. Let G, be a ““general” splitting group with respect to
p:G—G. If Dis aSUR of G, which lifts some SUPR Pof G,
itisclear that D (ker p,) C T, and therefore y, = D |y, ,, is
a unidimensional UR of ker p,. Because of the Abelian na-
ture of T we have y,, ((ker p,)') = 1. Then (ker p,)’ is con-
tained in the kernel of any SUR of G, which lifts any SUPR
of G. But (ker p, )’ being a characteristic subgroup of the
normal subgroup ker p,, (ker p,)’ is also normal in G, and we
can define G, = G\/(ker p,)’ and p,:G,—G as p, [g.(ker p,)']

= pi(g1). On the other hand, D gives rise naturally to a SUR
of G,which is also a lifting of P. The new kernel, ker p,, is
Abelian because it is the Abelianized of ker p.. Then G, is a
splitting group for G with an Abelian kernel ker p,.

Henceforth we restrict our search for splitting groups to
extensions of G by Abelian kernels, 4, 1 >4—>G—>G—1.
Any (equivalence of class of ) extension of G by 4 is charac-
terized by an action © of G on 4, 8:G—Aut 4 and a (coho-
mology class i of ) @-factor system w:G X G—A If weip, the
group G is isomorphic (equivalent as extension) to the group
called G5 and obtained giving in the set of pairs, (a,9)ed X G
the following composition law,

(a.8) (bh) = (ab®® w(g,h), gh).

The epimorphism p:G—G is defined in terms of G; by
pl(a,g) = g. The explicit reference to this p will be omitted in
the following. We turn now to the second reduction step, in
which we show that one can choose, without any real loss of
generality the action — K instead of the most general ©. Let
G, be a splitting group for G, with Abelian kernel 4, and
“general” action ©:G—Aut 4,. If D is a SUR of G, which
lifts some SUPR Pof G,and y,, =D |, 4 €A, the relation
(1,8) (a,1) = (a®®,g) which holds in G, implies
[xp (@] = Yo (ae(g)), ory, (e 1)( - K)(g)ae(g)) = 1, that
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is, (@~ )~ KN8&O( g)ekerx 1 these relations being accom-
plished for all y DeA arising from those SUR’s of Gz which
are lifts of the SUPR’s of G. Let S be the subgroup of 4,
whose elements are all such y ,, and define B = n, s kery. It
is clear that B is a normal subgroup of 4,, and again it is also
normal in G, so that defining G, = G,/B and

pgB) = pi(g)) we have a new splitting group G, because B
is contained in the kernel of every “relevant”’SUR of G,.
Furthermore, the induced action of G on the new kernel

A, = A,/Bisjust, as one easily sees, the action — K of Gon
A,.

Then we have obtained:

Proposition 1: In the search of splitting groups for (G,K )
we can restrict our study to the (“right-hand part” of) exten-
sions of G by Abelian kernels 4 with action — K of Gon 4.

Now we fix our attention on the conditions which must
satisfy 4 and w in order for G; to be a splitting group. With
this purpose let us introduce some auxiliary homomor-
phisms. Every Xexf defines a homomorphism XI:Z 2 (GA)
—Z¥G,T), y(w) = yow, compatible with the equivalence
modulo the respective B? and therefore induces another ho-
momorphism y:H? (G,A)—H?2(G,T), X(w) X(w) with
any weip. Slmllarly, every we Z* (G,A) defines a homo-
morphism WA— Z32 (G,T)by w( Y) = X(w) Moreover, if
w, and w, are cohomologous, so are t, ( y) and wz( y)forany
XGA and one can define an homomorphism wW:A— HXG,T)
by w(y) = )((w) In terms of such homomorphisms, we
have the following results:

Proposition 2: ASUPR Pof (G,K ) can belifted toa SUR
of (G, K ) iff there exists a XGA such that X(w) is the coho-
mology class of P.

Proof: If D is a SUR of G lifting P, the cohomology
class of P can be easily found to be y, (). [Here y, €4 is
determined as beforeby D | , (@) = yp(a)1.] Conversely, let
us assume that Pis a SUPR of (G,K ) with cohomology class
£ Ifthereisa XeA such that £ = y(iv), take a section
r:G—G and let w, € be the corresponding lifting of i, and
defined, = X(w,). Now ¢, liesin £ and Proposition 1 (Ap-
pendix) shows that there exists a multiplier lifting R, of P,
with factor system £, €£. The application D:G ;—I" U(H ) de-
fined by R (a.8), = y (@)R, (g) isa SUR of G which lifts P.

Theorem 1: If £eH ? (G,T), there is at least a SUPR of
(G,K ) with £ as its cohomology class.

Proof: It can be done by a straightforward generaliza-

tion of the Bargmann’s argument . Take an arbitrary el
and, on the vector space of all complex functions on G, define
[R.@)F](h) =((g.g' h)F8(g'h). ThenRisaSUMRof
Gand 7R, = PisaSUPR of G with cohomology class£. In
the case K = G this theorem is a particular case of a result of
Mackey. **

From Proposition 2 and Theorem 1 it follows:

Theorem 2: G is a splitting group iff i is an
epimorphism.

Proof: Every element of H (G,T) must be obtained as
X(w) = w( y) with some )(eA
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As w is an epimorphism, we have that Card(AA ) (the
order of A ) is some multiple of Card H? (G,T’) and conse-
quently, the order of any splitting group G is some multiple
of Card H %(G,T) X Card G. The lowest order for G is
Card H2;(G,T) X Card G.

Definition 7: The group G5 is said to be a representation
group for (G,K) if it is a splitting group of minimal order.

For representation groups we have

Theorem 3: G is a representation group iff i is an
isomorphism.

Proof: The order of G; must be Card Hi,(GT)
X Card G and therefore A must have the same order as
H?%(G,T). This, and the fact that i must be an epimorphism
implies that @ is an isomorphism. The converse is trivial.

A useful characterization of the kernel of it is furnished
by the next proposition.

Proposition 3: The kernel of it consists of those elements
of A which are restrictions to 4 of the crossed homomor-
phisms 7:G;—T.

Proof: Let r be a section r:G—G and w, its factor sys-
tem. If yeker w, as X(w )eB X(G,T), there exists AeC (G, T)
such that yow, = 8A. Define y:G_—T by y(a.g),.

= x (@4 (g).ItisclearthatyeZ XG,T),and Y|4 —X Con-
versely, if XEA is the restriction to 4 of some yeZ (G, T),
XY =%|.4, then the relations

Y [(a’g) r (b9h ) = V(a,g) r yg (b,h )r s
7 (@.8), = x@y(1g),,
hold and with a simple computation we obtain

7(1,8), v* (Lh),

’h =
x(w, (gh)) (eh),

le,w(y) = L

4. EQUIVALENCE OF SPLITTING GROUPS

We begin this section with a definition about the equiv-
alence of splitting groups. According to our Definition 6, a
natural concept of equivalence ought to refer only to the
epimorphisms p:G—G.

Definition 8: Two splitting groups for G, (G,p),and (G,
p') will be called equivalent if there exists an isomorphism
R:G—G ' such that p = p'oR

This relation is obviously an equivalence relation.

As we have seen in Propostion 1, splitting groups arise
essentially only as the (“‘right-hand part” of ) extensions of G
by Abelian groups 4. Thus, if one knows G as some extension
of G by A (which demands to know p: G—G and i:A—G ) one
can also consider the equivalence of extensions (in the usual
sense) as a criterium of equivalence of splitting groups. Of
course there is a close relation between these two equiva-
lences which we are going to analyze, in order to show that,
from our point of view, this difference is, in some sense,
irrelevant.

In fact it is well known '° that if (G, p) is a splitting
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group for G with a kernel isomorphic to some 4, and we
denote by i the canonical injection /:Kerp—G, any isomor-
phism a:Kerp—A defines a new extension (unique up to
equivalence) 1—>4—G '—>G—1 and an isomorphism R (be-
cause of the short five lemma) such that the diagram

1—Kerp ! 5p G—1

—, —
b ak
1— A ! G’ P G—1
-— —

is commutative. Itis clear that (G___’ ") is also a splitting group
equivalent (cf. Definition 8) to (G,p). Conversely, if we have
two equivalent splitting groups (G,p) and (G ',p’), let i,i’ be
the canonical injections /:Kerp—G, i":Kerp'—G '; it is clear
that the restriction of the R that realizes the equivalence to
Kerp is an isomorphism o:Kerp—Kerp’'. Now if one identi-
fies Ker p and Kerp' with 4, through the isomorphisms a°c
and a, respectively (a arbitrary), and consider the extensions

i __p
of G by A4 obtained from 1 -Kerp — G — G—1 through

[
a°o and from 1—-Kerp’' — G’ — G—1, through a, it is evi-

dent that such extensions of G by 4 are equivalent in the
usual sense.

Now let gcAut 4, and use the obvious generalization of
the same notations previously employed, ¢ for the homo-
morphism Z2 (G,4)—Z?2_ (G,A),  (w) = ¢ow, and ¢ for
the homomorphism H2 (G,A)— H* (G,4), ¢ (i)
= ¢ (w) with any wew. It is easy to show:

Proposition 4: Let (G,p) and (G',p") be two splitting
groups, which are extensions of G by 4 with action — K, and
let i and &' be the corresponding cohomology classes. Then
G and G’ are equivalent iff there exists gcAutd such that
w' = ¢ W).

The extension equivalence classes of splitting groups for
(G,K ) with kernel 4 and action — K are in one-to-one corre-
spondence with the subset of H> (G,4 ) whose elements i
verify that i is an isomorphism. On the other hand, the
equivalence classes (cf. Definition 8) are in one to one corre-
spondence with the orbits of Aut4 [with action
¢—(D—¢ ()] in such a subset of H2_ (G,4 ). It is a trivial
task to establish the corresponding results for isomorphism
of splitting groups.

5. REPRESENTATION GROUPS

In the folllowing we shall restrict ourselves to the repre-
sentation groups. If some extension of G by 4 has a middle
group G; whichisa representation group, one derives easily
from Theorem 3 that 4 must be isomorphic to H%(G,T),
and, of course, 4 itself must be isomorphic to [H (G, T)] .
Then, for finite groups, the kernel of any extension of G lead-
ingtoa representation group is essentially unique
(=[H(G,T)] ). Because of the autoduality of finite Abe-
lian groups, one could also take 4 =~ H (G, T') as Janssen
does, but as we are looking for a procedure that can be gener-
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alized to Lie groups [in which case H 2(G,T) is no longer
finite,], then we shall always choose 4 =~ [H2(G,T)] . Asa
direct consequence of Theorem 3 and Proposition 3 we have:

Proposition 5: Let G5 be the middle group of the exten-
sion of G by [H 2(G,T) ] that is labelled by
weH? (G,[H3(G,T)] ). Then G is a representation
group [for (G,K )] iff the restriction to [H2(G,T)]  of every
crossed homomorphism yeZ (G, T) is trivial.

In order to translate this condition into a more easy
form we draw our attention to the groups Z }(G,T) and
H!(G,T). Let it be an arbitrary element of H > (G,4 ) (with
an arbitrary 4 ), and let 1 -4—G; —G—1 be the corre-
sponding extension. The surjective homomorphism p:G;
—G induces an injective homorphism
9 Z (G, T)—-Z {G,T) defined by (5 ) = op.

The elements belonging to the image of ¢ are trivial on
A. Moreover ¥(B ! (G,T)) CB !(G5,T) and ¢ induces a new
injective homomorphism, ¥:H . (G,T)—H }(G;,T).

If we take 4 = [H%(G,T)] , Proposition 5 show us
that G, is a representation group iff ¢ is also surjective, be-
cause then every yeZ . (G, T ) is trivial on A. In such a case ¢
and ¢ are isomorphisms. We have obtained:

Theorem 4: G, is a representation group iff the canoni-
cal mapping ¥ is an isomorphism.

The elements of Z 1 (G,T) and H ! (G,T) are closely re-
lated to the semiunitary unidimensional representations of
(G,K ). Infact, let yeZ }(G,T) and K be some (fixed) antiuni-
tary operator in a unidimensional Hilbert space H, and de-
fine an application R :G—I"U(H ) by

g—r(g), gek,

—(gK, geG—K.

Then, it is clear that R, is a unidimensional SUR of
(G.K'). Conversely we can associate some yeZ } (G,T) to ev-
ery unidimensional SUR of (G,K ), by “removing” K.

The study of Z (G, T) is therefore equivalent to the one
of unidimensional SUR’s of (G,K ), which can be done by
means of the traditional method of induced representations
(with antiunitary operators’®). Take some #-dimensional UR
of K,4, and induce from 4 a SUR of (G,KX ); we obtain a SUR
of (G,K') whose dimension is #n, 2n, 2n, depending on the
“Wigner type” of 4 being I, 11, III. Then, unidimensional
SUR’s of (G,K) are just induced by type I unidimensional
UR’s of K, which form a subgroup of K’ (unidimensional
UR’s of K') and will be denoted K . Then we have, !¢

KV = {0eK |o(h) = 0" (g5 " hg)) and (@) = 1,
V heK, gG — K }.

There is a useful test, due to Dimmock"” which gives the
Wigner type of any UR of K in terms of his character. In our
case, the UR’s of K and their characters coincide, and we
have

Rw= {ael? 'S olghy) = CardK |.

heK
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Proposztzon 6: There is a (noncanonical) isomorphism
K® ® T—»Z XG,T).

Proof Select an arbitrary but fixed g,eG — K and define
Pe, KD g7 7! «(G,T) as follows: If (0,¢ )eK KD g T, then

a(g), gek,

(@, (0:6)]1(8) = { X
(o' @ '), geG—K

The remaining part is trivial.

The image of T'by P isjust B 1(G,T) and hence we can
state:

Proposition 7: There is a (canonical) isomorphism
KO H! A(G,T).

If K = G, the crossed homomorphisms are homomor-
phisms and (as there are not “Wigner types’) Proposition 6
reduces to the well-kngwn statement that H '(G,T) is the
group Hom (G,T)=G

By making use of these results, we obtain from Theorem

Corollaty 1: G;; is a representation group [for (G,K )] iff
K®and K are isomorphic.

AThe explicit form of Dimmock’s test can be modified
for K () in the following way: If weit, and g,€G — K, we have
K® = {0eKy| Sk olwigohgoh ), @oh)) = Card K }.

In the particular case K = G, from Corollary 1 we have:
G is a representation group iff G; and G are isomorphic;
this condition is equivalent to saying that 4 = [H3(G,T)]
is contained in the derived group (G;) of G;. Hence we
meet Schur’s well-known result”*:

Corollary 2: The middle group G of some central ex-
tension of Gby (a groupisomorphicto) [H *(G,T)] isarepre-
sentation group for (G,G) iff [H ¥(G,T)] C(G3).

An alternative, more general view of the results of Secs.
3 and 5 is provided by considering the inflation-restriction
sequence for 1—»>A4-+G;—G—1. In fact,